
# GUIDE TO IMPLEMENTATION OF CONCRETE REPAIR





ACI - Kuwait Chapter

P.O.Box: 12608 Shamiah 71657 KUWAIT

Tel.: 2448975 Ext. 312

Fax: 2428148 info@acikuwait.com

# GUIDE TO IMPLEMENTATION OF CONCRETE REPAIR

This guide provides informations about implementation of concrete repair to owners, professionals working in the field of repair under the specific conditions applicable to Kuwait

### Reported by:

### **Technical Sub-Committee 03 Members**

Abdul Hamid Darwish Task Force Officer

Moetaz El-Hawary Naji Al-Mutairi Ahmed S. Essaway Mohammed Harb A. W. Rumani Amgad Saad

### **Technical Committee Members**

Naji Al-Mutairi and Moetaz El-Hawary Chairpersons

Abdul Hamid Darwish Mohammed Harb

A. W. Rumani Ahmed S. Essaway Amgad Saad

# The Arabic translation and printing of this quide were funded by



### Kuwait Foundation for the Advancement of Sciences (KFAS),

a private non-profit organization oriented towards public service, was instituted by an Amiri Decree, issued in 1976. KFAS is managed by a Board of Directors, chaired by His Highness, the Amir of the State of Kuwait. Major finances are received from Kuwaiti shareholding companies. The broad mission of KFAS is focused on human and cultural development through a set of scientific programs aimed at nurturing basic and applied research, sponsoring workshops and conferences, promoting cultural awareness, publishing books, encyclopedias and journals, awarding prizes to meritorious scientists, contributing to the development of the national scientific infrastructure and establishing centers of excellence in the State of Kuwait.

| CONTE     | ENTS about all A mage M                                            | PAGE       |
|-----------|--------------------------------------------------------------------|------------|
|           |                                                                    |            |
| Introduc  | tion                                                               | 4          |
| CI.       | m with Guide to assessment of                                      | conjunctic |
| Cnapter   | 1 Repair Materials                                                 |            |
| 1.1       | Objectives                                                         |            |
| 1.2       | Types of repair materials                                          |            |
| 1.3       | Criteria for selection of Repair Material                          |            |
|           |                                                                    |            |
| Chapter   | 2 Repair Methods.                                                  | 12         |
| 2.1       | Preparation                                                        |            |
| 2.1.1     | Steel Propping                                                     |            |
| 2.1.2     | General Surface Preparation Procedures                             |            |
| 2.2       | Repair Without Section Enlargement                                 |            |
| 2.2.1     | Shotcrete                                                          |            |
| 2.2.2     | Hand Applied Repair/Dry Packing                                    |            |
| 2.2.3     | Form and Pump                                                      |            |
| 2.2.4     | Crack Injection                                                    |            |
| 2.2.5     | Form and cast in place, Full or Partial Depth                      |            |
| 2.2.6     | Electro chemical concrete repair (Non Destructive Repair)          |            |
| 2.3       | Repairs with Section Enlargement                                   |            |
| 2.3.1     | Concrete Jacketing                                                 |            |
| 2.3.2     | steel standard sections of steel plates of the engineered sections |            |
| 2.3.3     | Carbon Fiber Reinforced Plastics (CFRP) Strips                     |            |
| 2.3.4     | Fiber Reinforced Plastics (FRP)                                    |            |
| 2.3.5     | Shotcrete                                                          |            |
| Chapter   | 3 Quality Assurance Q/A                                            | 33         |
|           |                                                                    |            |
| Chapter   | 4 Tender Documents                                                 | 37         |
| 4.1       | Form of Contract                                                   |            |
| 4.2       | Tender Documents                                                   |            |
| 4.3       | Method of Measurement                                              |            |
| 4.4       | Cost of Repair                                                     |            |
| 4.5       | Legal Aspects                                                      |            |
| Reference | es                                                                 | 41         |
|           |                                                                    |            |

### Introduction

This guide to implementation of concrete repair ACI/KC - 03 should be read in conjunction with Guide to assessment of concrete repair ACI/KC - 01 year 1998. This guide gives an overall scope of services that should be known to the parties involved in the concrete repair process, namely: the owner, the consultant, contractors and end-users. Based on the method statements outlined in this guide, the owner should be able to:

- 1. Prevent safety hazards
- Increase the return on investment by extending the lifespan of the project/ building
- 3. Decide the course of action either to repair or demolish and rebuild
- Obtain the necessary special guarantees from the rehabilitation contractor.

This approach differs from the traditional way of lump sum contracts. Literature is intended for the use of all professionals working in the field of repair including concrete works consultants and contractors.

The guide contains four major sections:

### Repair Material

This section defines for the consultants the criteria for selecting repair materials. Following that, a list summarizes the various repair materials, application requirements.

To link repair method and selected repair material, another list of repair method, corresponding repair materials and available market material is included.

### Repair Methods

This section is for consultants and contractors to reveal and select the appropriate method of repair.

This document reviews the repair methods used in the gulf region and in Kuwait. For the sake of completion, the guide contains some other repair methods used worldwide such as: form and pump. In addition, we present the latest advancements in the field of electrochemical, concrete repair and protection in severely chloride- contaminated environment.

The repair methods are discussed in detail starting with the logical sequence of execution, the substrate preparation, protection of steel reinforcement, followed by a detailed discussion of methods of repair.

Repair methods are classified into two main categories:

- Repair without section enlargement i.e. sections having residual safe and service load carrying capacity and
- Repair with section enlargement.
   These are sections, which have no sufficient carrying capacity and need to be strengthened by section enlargement

### **Quality Assurance**

This section deals with quality assurance process, before starting repair works. Professionals are pre-qualified and selected from those working in the field of repair. For quality control, apply testing standard of the selected repair material during the course of executing repair works. For proper documentation apply administrative procedures to ensure the

quality control on submittals and workmanship are as specified.

For proper and controlled workmanship approve mockups to ensure that the selected repair materials and methods conform to the specified end product prior to execution on a project scale and finally evaluate the performance of repair material after execution.

### **Tender Documents**

This section deals with the recommended form of contracts based on Kuwait experience in various repair projects to avoid all future claims and have a fair, balanced contract between the owners and contractors.

We added some legal and contractual items and guarantees to reserve the owner rights. The method of measurement of the completed repair work differs totally from the traditional type of lump sum contracts.

Based on the estimated cost of repair prepared by the consultants the owner will decide to either repair or demolish and rebuild.

### Chapter 1 Repair Materials

### 1.1 Objective

Selecting materials that meet all necessary properties and requirements after the condition survey and strength evaluation of the old-aged/damaged structural member is difficult. Some require load carrying capacity and others durability or resistance to ingress of chemicals or any combination of each. It is important to understand the repair material response to loads, exposure and surface conditions to which the selected material will be subjected.

### 1.2 Types of repair materials

- Portland cement mortar with admixture
- Portland cement concrete with admixture
- Micro-silica modified Portland cement concrete
- Latex modified Portland cement
- Polymer modified Portland cement mortar & concrete with non sag fillers
- Steel plates or steel sections
- Fiber glass reinforced plastics (FRP)
- Carbon Strips (CFRP Laminates)
- Epoxy Mortar
- Shotcrete

## 1.3 Criteria for selection of Repair materials

- The repair material should be compatible with properties of the host/ old concrete
- Both the host material and repair

- material will work as a composite section under the service loads
- If the repair material and host material are not compatible the risk of delaminating is eminent and the repair is nullified and worsens the state of the damaged member by increasing extra load of repair material.

The major aspects of the overall compatibility of repair material are:

### Performance Compatibility

Elastic modulus of the repair material (stress strain relationship) must match the host concrete. Compressive strength, tensile strength, bond strength of the repair material must have higher values than the host concrete (recommended minimum compressive strength of repair material is 27.6 Mpa - 4000 psi at 28 days).

### • Environment Compatibility

The repair material must exhibit low permeability to the ingress of sulphate ions, chloride ions, carbon dioxide and moisture.

### Dimensional Compatibility

This item deals with long term integrity/ durability of the repair material. The thermal coefficient of expansion of the repair material shall match the substrate or host material while the drying shrinkage of the repair shall be equal or less than 500 micro-strain after 28 days.

### Electrochemical Compatibility

The objective is to ensure that the patch repair of highly contaminated substrate concrete with chloride content environment, will not act as an Incipient Anode (Preliminary or Start up anode) which will nullify the repair process and creates an environment that chemically passivates the reinforcement.

 List of Various Repair Materials, Application Requirements and Properties The following two tables include lists of different repair materials. The first includes the properties and application requirements for some different repair materials, while the second includes the materials corresponding to each repair method along with the available market materials.

Table # 1
List of Various Repair Materials

|                                                                     | Ingredients                                                       |                                       |           | Mat                     |             |                               | Materi        | Material Properties | erties                                     | 1 30            | ad.<br>design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             |
|---------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------|-----------|-------------------------|-------------|-------------------------------|---------------|---------------------|--------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Materials                                                           | i                                                                 |                                       | Drying    | Coeff. Of               | Con         | Compressive Strength pssi/MPa | Streng<br>IPa | th.                 |                                            | -               | Non-Sag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ioni<br>sori                                                |
|                                                                     | Binder                                                            | Admixture                             | Shrinkage | Inermal<br>Expansion    | 1 Hr.       | 1<br>Day                      | 3<br>Days     | 28<br>Days          | psi/MPa                                    | (Concrete = 10) | Quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments                                                    |
| Portland Cement Mortar                                              | Portland cement                                                   | Water redu-<br>cer. Air-entr.         | U         | Equal to substrate      | 0           | 650                           | 2500<br>17.2  | <u>5000</u>         | $\frac{3.4 \times 10^6}{2.3 \times 10^4}$  | 9               | Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i gai<br>sçor i<br>sq ox                                    |
| Portland Cement Concrete                                            | Portland cement                                                   | Water redu-<br>cer. Air-entr.         | U         | Equal to substrate      | 0           | 650<br>4.5                    | 2500<br>17.2  | 34.5                | 3.8×10 <sup>6</sup><br>2.6x10⁴             | 6               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ioflos<br>Paren<br>des r<br>reque                           |
| Microsilica Modified Port-<br>land Cement Concrete                  | Portland cement                                                   | Super plisti-<br>zer                  | U         | Equal to substrate      | 0 .         | 3000                          | <u>4000</u>   | 7000<br>51.7        | 4×106<br>2.8×104                           | 9               | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The<br>of di<br>moli                                        |
| Latex Modified Portland<br>Cement Concrete                          | Portland cement                                                   | Latex SBR                             | n         | Compat.<br>w/substrate  |             |                               |               | 6000<br>41.4        | 2.5×10 <sup>6</sup><br>1.7×10 <sup>4</sup> | 5               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |
| Polymer Modified Port-<br>land Cement Mortar with<br>Non-sag Filler | Polymer Modified Port-land cement Acrylic latex<br>Non-sag Filler | Acrylic latex                         | L         | Compat.<br>w/substrate  |             | 1500<br>10.3                  |               | 34.5                | 2.5×10 <sup>6</sup><br>1.7×10 <sup>4</sup> | 82              | Excellent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                          |
| Magnesium Phosphate Cement Concrete                                 | Magnesium<br>phosphate cement                                     |                                       | Г         | Equal to substrate      | 2000        | 6400                          | 7000          | 8400<br>57.9        | $\frac{3.2 \times 10^6}{2.2 \times 10^4}$  | 6               | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACI 304<br>R-23                                             |
| Preplaced-Aggregate Con-<br>crete                                   | Portland cement                                                   | Fluidifier                            | Т         | Equal to substrate      | 0           | 3.4                           | 2250<br>15.5  | 4500<br>31          | 3.8×10 <sup>6</sup><br>2.6×10 <sup>4</sup> | 10              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACI 503.4                                                   |
| Epoxy Mortar                                                        | Epoxy resin                                                       |                                       | Т         | (1.5 - 5)<br>x concrete |             |                               |               | 82.7                | 2.2x10 <sup>6</sup><br>1.5x10 <sup>4</sup> | -               | Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vapor may cause<br>Moderate problems in con-<br>fined areas |
| Methylmethacrylate<br>(MMA) Concrete                                | Acrylic resin                                                     |                                       | Т         | (1.5 - 5)<br>x concrete | <u>4000</u> | 12000<br>82.7                 |               | 12000<br>82.7       | 3×10 <sup>6</sup><br>2×10 <sup>4</sup>     | -               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | node<br>wh<br>coss a<br>coss c                              |
|                                                                     | Portland cement                                                   | Water redu-<br>cer. Acceler.<br>Latex | Г         | Equal to Substrate      | 0           | 800                           | 3500          | 34.5                | 3.8×10 <sup>6</sup><br>2.6×10 <sup>4</sup> | 9               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACI 506<br>R-90                                             |
|                                                                     |                                                                   |                                       |           |                         |             |                               |               |                     |                                            |                 | The state of the s |                                                             |

HRWR: Drying Shrinkage:

g Shrinkage: (U) Upper limit 300 micro strain - 7 days (L) Lower limit 500 microstrain - 28 days

# Table # 2 LIST OF REPAIR METHODS AND CORRESPONDING REPAIR MATERIALS

| Repair Method                                                                                                                                                                                                                                           | Repair Material                                                                                        | Available Market Material or                                                                                                                            |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Preparation                                                                                                                                                                                                                                             | ment, only grasen aggregates, not sag<br>libers shinkere compensating systems                          | Equal Approved                                                                                                                                          |  |  |
| Substrate                                                                                                                                                                                                                                               | Bonding Agents     Cement Based Slurries     (for Portland cement based repairs)                       | KUT SBR # 1     KUT Poly fix     (Site mixed mortar)     Nitobond SBR                                                                                   |  |  |
| w KUT Inject Pox<br>w KUT Inject Pox<br>w NUTOHULL-ERLY                                                                                                                                                                                                 | • Epoxies (ASTM C881)                                                                                  | Nitobond EP     KUT Epoxy mortar     GB or HB                                                                                                           |  |  |
| ORIJES OTEM &                                                                                                                                                                                                                                           | Latex Emulsion (ASTM 1059)     (For Latex modified or micro silica modified repair)                    | <ul> <li>Nitobond AR (Acrylic Base)</li> <li>Nitobond SBR</li> <li>KUT SBR # 1</li> </ul>                                                               |  |  |
| Reinforced Steel Bars Protection                                                                                                                                                                                                                        | Alkaline Slurry coating     Zinc applied to bar surface                                                | KUT Flexi     Nitroprime Zincrich                                                                                                                       |  |  |
| Galvanic Protection                                                                                                                                                                                                                                     | Zinc scarified anode                                                                                   | Glavashield XP                                                                                                                                          |  |  |
| REPAIR                                                                                                                                                                                                                                                  | WITHOUT SECTION ENLARC                                                                                 | EMENT                                                                                                                                                   |  |  |
| FORM AND CAST Fluid Micro-silica Surface Repair for vertical location and partial depth repairs                                                                                                                                                         | <ul> <li>Fine grained Mortars</li> <li>Coarse aggregate concrete including<br/>Micro-silica</li> </ul> | KUT Flow Grout     KUT Flow Crete     KUT Fast Crete     Randroc LA                                                                                     |  |  |
| Hand Applied/Dry Packing (Mortar Types) For all locations Overhead, vertical or flat small cavities (tie holes) honeycombs or gabs.                                                                                                                     | Portland cement mortar or concrete, low (W/C) Nearly zero slump                                        | <ul> <li>KUT GP Grout</li> <li>KUT Flow Grout</li> <li>KUT Flowcrete</li> <li>KUT "Dualex" Additive</li> <li>Randroc TGx</li> <li>Randroc Sx</li> </ul> |  |  |
| SHOTCRETE  Premixed binder and aggregates sprayed under pressure the mix is jetted through a nozzle at a high-speed used for any thickness vertical, overhead for slabs, beams, walls and columns. Repair damage due to fire attack or severe corrosion | Increased thickness     Increased density     Increased chemical resistance                            | KUT Polyganite     Rendroc SPX                                                                                                                          |  |  |
| nstra rain                                                                                                                                                                                                                                              | FULL DEPTH REPAIR                                                                                      | icelkanization                                                                                                                                          |  |  |
| Extensive surface damaged slabs                                                                                                                                                                                                                         | Portland cement concrete with very low shrinkage                                                       | KUT Flowcrete     Rendroc LAx                                                                                                                           |  |  |

| Repair Method                                                                                                                                       | Repair Material                                                                                                                                                                                                                                                   | Available Market Material or                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Preparation                                                                                                                                         | R METHODS AND CO                                                                                                                                                                                                                                                  | Equal Approved                                                                          |
|                                                                                                                                                     | HAND APPLIED                                                                                                                                                                                                                                                      |                                                                                         |
| For vertical and overhead location-ap-<br>plication by layers<br>Surface repair for all concrete spalled<br>cover                                   | NON Sag material special blend of ce-<br>ment, only graded aggregates, non sag<br>fillers shrinkage compensating systems<br>and water                                                                                                                             | KUT Super coat # 2                                                                      |
| (Site mind mertar)                                                                                                                                  | FILL IN CRACKS                                                                                                                                                                                                                                                    |                                                                                         |
| Structural Cracks<br>(Non Moving Cracks)<br>Repair to restore load transfer for<br>(>3mm crack width)                                               | Ероху                                                                                                                                                                                                                                                             | <ul> <li>KUT Epoxy grout EPLV</li> <li>KUT Inject Pox</li> <li>NITOFILL EPLV</li> </ul> |
| Non Structural Cracks (Moving Cracks) Thermal Expansion for (<3mm crack width)                                                                      | Polyurethane<br>(Low viscosity)                                                                                                                                                                                                                                   | NITO fill UR63                                                                          |
| dumnal Spaingorible                                                                                                                                 | PROTECTION                                                                                                                                                                                                                                                        |                                                                                         |
| Chloride Induced Corrosion     Carbonation induced corrosion.  Agressive surface damage                                                             | Surface Applied Penetration sealers & membrane high density, low vapor transmission                                                                                                                                                                               |                                                                                         |
| 990 Yell 192 *                                                                                                                                      | ELECTROCHEMICAL                                                                                                                                                                                                                                                   | CONCRETE REPAIR                                                                         |
| CORROSION INHIBITORS  Added to concrete during mixing Surface applied coating to concrete In service by Brush or Roller                             | Admixtures as calcium nitrate     Surface applied                                                                                                                                                                                                                 | Conplast CN                                                                             |
| Cathodic Protection  Sacrificed Anode System  Impressed Current System                                                                              | <ul> <li>Zinc or Magnesium anodes</li> <li>Mesh of inter metal and conductive material</li> <li>Conductive coatings</li> <li>(paints heavily loaded by carbon)</li> <li>Mesh Anodes in the form of chicken wire from titanium with an activating coats</li> </ul> | Galva shield XP     Galva shield LJ                                                     |
| Chloride Extraction Apply Electrical field between reinforcement and externally mounted anode mesh                                                  | The system have been developed to remove chloride ions from the contaminated concrete and re-instate the passivity of steel bars                                                                                                                                  | Norcure                                                                                 |
| Realkanization The system involves passing an electric current through the concrete to the reinforcement using an applied anode to concrete surface |                                                                                                                                                                                                                                                                   | Norcure                                                                                 |

| Repair Method                                                                                                                                                                                                | Repair Material                                                                                                      | Available Market Material or                                                          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| Preparation                                                                                                                                                                                                  | nor <sup>e</sup>                                                                                                     | Equal Approved                                                                        |  |  |
| REPAI                                                                                                                                                                                                        | R WITH SECTION ENLARGEN                                                                                              | MENT MANAGEMENT                                                                       |  |  |
| Concrete placement: of additional concrete and steel reinforcing bars for beams, slabs, columns and walls                                                                                                    | Low Shrinkage     Compressive strength, bond and modulus of elasticity to match or more than host concrete           | he success of any concrete red is attributed to the proper attor of the safety precau |  |  |
| Steel Plates And Steel Sections Me-<br>chanically bonded to concrete                                                                                                                                         | <ul> <li>Standard Steel Sections or Pre-Engineered Sections as required by Structural Analysis and Design</li> </ul> | showing the right procedure<br>erestaden                                              |  |  |
| Carbon Fiber Reinforced Plastic Strips<br>(CFRP) Cross wise applied strips in-<br>stalled with epoxy adhesive                                                                                                | CFRP - strips     Carbon Fiber     Reinforced Plastics                                                               | A, i Steel Propping                                                                   |  |  |
| Fiber Reinforced Plastic (FRP) plates<br>may be used as steel plates to improve<br>carrying capacity of beams and arrest<br>propagation of crack - Fixed by epoxy<br>adhesive or mechanically bonded or both | Plates or Reinforcing bars versatile                                                                                 | auporary supporting system so folds:   Prevent Safety august                          |  |  |
| Shotcrete premixed binder and aggregates sprayed under pressure                                                                                                                                              | Portland Cement and aggregates<br>with admixtures (silica fume)                                                      | KUT polyganite     Rendroc SPX                                                        |  |  |

### **Chapter 2 Repair Methods**

### 2.1 Preparation

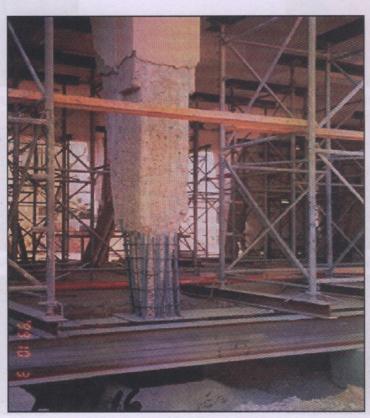
The success of any concrete repair method is attributed to the proper Implementation of the safety precautions and following the right procedures as stated hereunder.

### 2.1.1 Steel Propping

Prior to any concrete removal, the contractor shall design and install a Steel temporary supporting system, which has two folds:

- Prevent Safety hazards
- Redistribute the load allowing stress relief during the repair The steel propping operation shall be kept in place until the repair material application gains the required design strength.

## 2.1.2 General Surface Preparation Procedures


The following steps are the general requirements for surface repairs.

- Step 1: Prepare necessary Equipments
- Step 2: Mark out the area to be repaired
- Step 3: Cut back around the area to be repaired to a minimum depth of 10 mm.
- Step 4: Remove contaminated concrete and expose rear face of steel
- Step 5: Expose fully the steel bars
- Step 6: Clean steel bars by sand blasting
- Step 7: Clean the substrate
- Step 8: Apply prime coat to steel bars
- Step 9: Soak with clean water under pressure
- Step 10: Prime the substrate and leave to become tacked

### STEEL PROPPING



Steel Proping For Beams and Slab



Steel Proping For Column Repair

# Appendix # 1 General Surface Preparation



1. Equipment



2. Marking Out



3. Cutting Back



4. Breaking Out



5. Fully Expose Steel



6. Clean Reinforcement



7. Clean The Substrate



8. Prime Reinforcement



9. Soak the Substrate



10. Priming The Substrate

## 2.2 Repair without section enlargement

### 2.2.1 Shotcrete

#### General

Shotcrete is successfully used for partial depth repair for vertical surfaces. Beams walls and columns or for overhead sofits of slabs or beams. It is recommended for Fire attack repairs having large concrete spalls and where the steel reinforced bars are exposed. Also can be applied for concrete having severe corrosion of steel in columns beams or slabs. There is no limit for the repair section and no or little formwork are used as guides to control the thickness.

### Material and Applications Wet Method

Shotcrete is a method that involves premixing of sand, cement, (8mm to 10mm) aggregates, admixtures and water. The premixed repair material is deposited into a pump or pressure vessel, which transports the material to an exit nozzle. The nozzle man directs the jet into the substrate where it adheres and simultaneously compacted by the impact force.

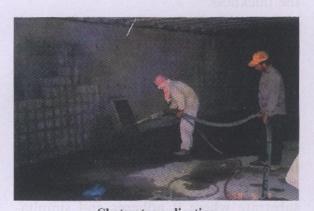
The application will be in layers. In order to produce a low porosity concrete, reduced permeability and increase resistance to chemical penetration, admixtures are used to enhance concrete properties. Silica fumes, fibers and micro-silica are generally used.

#### **Procedure**

- 1. Arrange adequate scaffolding before surface preparation.
- 2. Cut all defected concrete by small jackhammer (light weight)
- 3. Sandblast all cut areas.
- 4. Add any required substitute steel bars. With the necessary overlaps with the in defected bars.
- 5. Fix wood or metal strip guides to establish the required thickness.
- 6. Damp well all surfaces before shotcrete application.
- 7. Replace the defected concrete by shotcrete.
- 8. Leave the shotcrete material undisturbed, trowel to the required finish within an hour of application. Cure for an adequate period.

### Shotcrete




Delamination of concrete cover after fire damage



Removal of all deteriorated concrete and sand blast all exposed surfaces



Cutting back to expose the surface area of walls



Shotcrete application



Ribbed Beams after repair



Shear walls after repair

### 2.2.2 Hand Applied / Dry Packing

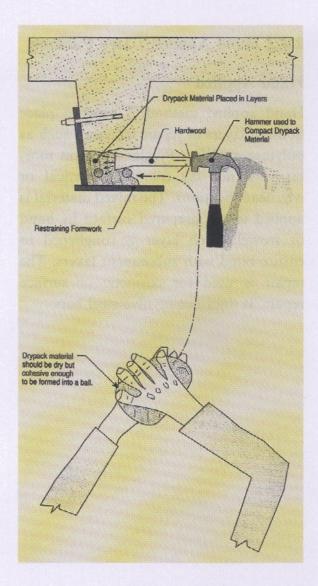
### **Hand Applied**

Hand applied method is used to place non-sag layers of repair materials such as polymer modified Portland cement mortar with non-sag fillers on vertical or overhead locations. The mixed material is applied to the prepared surface by hand or trowel. Each layer is roughened to ensure bond with subsequent layers. The repair is used for cosmetic or surface repair. It does not involve steel bars.

### **Application**

The following steps are the general requirements for repair:

- Step 1: Mix full bag and add required water content, mix steadily using slow speed drill for 5 minutes
- Step 2: Thoroughly compact by a trowel onto the substrate
- Step 3: Finish with steel trowel
- Step 4: Cure as soon as surface is dry using a curing agent or Water


### **Dry Packing**

Dry packing is a method of placing zero-slump, or near zero-slump, mortar or concrete, by ramming into surface cavities. The Consistency of dry pack mortar must be such that it can be molded into a ball without excessive bleeding. Compaction densities the mortar and provides the necessary intimate contact with the existing concrete for achieving bond. Dry packing techniques can be used in all locations. Overhead, vertical and flat. Best applications are generally small cavities such as tie holes, small areas of surface honeycomb, or rib bottoms (shown in illustrations)

Each dry pack mortar repair is placed in layers. Compaction is achieved with a hardwood stick to prevent polishing of the surface. Curing is accomplished with a continuous 7-day moist cure.

Ref: Concrete Repair and Maintenance Illustrated

Peter H. Emmons





Measure Out Water



Mixing







Application



Build-up



Finishing



Striking off



Curing

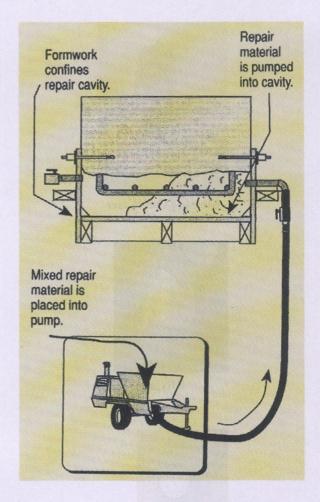
### 2.2.3 Form and Pump

#### General

Form and pump is an alternative to shotcrete, hand placement and grouted preplaced aggregate methods. It is used for vertical and overhead application and has no limits for placement for depth or size of repair (bulk repair). In cases of difficult accessibility i.e. offshore marine repairs.

#### Material

Use of almost any repair material.


Fine grained mortars, coarse aggregates concrete and polymers. Pumpility and Flow-ability is necessary for the selected repair material.

### **Application**

- Prepare surface to receive repair material
- Install vent tubes prior to construction of formwork.
- Construct formwork; attach pump hose and pumping fittings (valves etc.)
- Pump repair material into the cavity confined by concrete substrate and formwork.
- Cure and strip formwork.
   (Follow concrete practice rules)

Ref: Concrete Repair and Maintenance illustrated.

Peter H. Emmons



### 2.2.4 Crack Injection

### **Areas of Application**

Crack injection will be applied in two cases:

- If there is a potential threat to the durability of steel bar reinforcement.
- If it causes unacceptable leakage.

### **Crack Definition**

- Structural Crack: (Non moving crack)
  - Crack width is more than 3 mm due to accidental overload, creep and design loads or wrong detailing.
- Non-Structural Crack: (Moving crack) width is less than 3 mm due to thermal expansion and restrain from movement

### Material

Most injection materials consist of two components thoroughly mixed together before injection: Polymers include:

- Epoxies: Are Used for structural crack repairs,
- Polyurethanes: Are used for moving cracks and sealing leakage cracks.

### **Methods of Application**

### General

Resin (Epoxy or Polyurethane) is injected under pressure (4-6 bars) through ports or holes drilled along the crack.

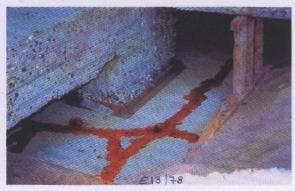
### **Application**

Clean the surface of concrete alongside the crack by removing loose or contaminated material.

- Drill holes along the crack and insert ports through the previously drilled holes seal around the ports, the spacing between ports depend on the crack width and not to exceed 50 cm.
- With all ports open, resin is injected under pressure from bottom to top.
- Start with the ports at the bottom (in case of vertical cracks) until a continuous flow comes from the next; continue the process until the crack is filled.

### **Leaking Cracks**

Follow the above-mentioned procedure (clean the surface, drill holes)


Inject Polyurethane resin foam to stop water leakage.

Once the leakage has been stopped, the crack is re-injected with a second material, which replaces the polyurethane foam and form a permanent seal.

### **Quality Control**

Cut cores from the injected crack to visually check the degree of filling the crack.

### **Crack Injection**



Foundation injection



Foundation and column neck injection



Preparation for ground beam injection



Injection of ground beam



Injection of main frame



Injection of suspended beams

# 2.2.5 Form and cast in place, full or partial depth

One of the methods for partial or full depth repair. It is used for vertical and in some cases for overhead surfaces.

Place formwork and cast of repair material into the prepared cavity. The repair material must be of low shrinkage and provide flow-ability. The material used is micro-silica modified Portland cement with super plasticizer. Complete filling of the last portion in case of vertical surfaces is difficult. In those cases final step of filling by dry packing, the remaining cavity is needed or adjusts the formwork to be higher than the final casting the level (Letterbox shape).



Formwork for sides of columns



Removal of form work



Casting repair material

# 2.2.6 Electrochemical Concrete Repair, Non Destructive Repair

### General

The objective is to ensure that the patch repair of highly Contaminated substrate concrete with chloride content Environment, will not act as an Incipient Anode, (preliminary anode). Nullify the repair process and to create an environment that chemically passivates the reinforcement.

### Repair Method

Breaking out the affected areas in deteriorated concrete having a higher percentage of chloride content (more than 0.3% by weight of cement) will only be effective if all the contaminated concrete is removed. Leaving residual chloride con-

taminated and cover by patch repair will create an incipient anode, this will reverse the process by ensuring that the newly cleaned steel embedded in a free chloride zone is forced to become a cathode polarizing the adjacent steel and lead to corrosion.

Several electrochemical methods are developed to repair concrete and protect concrete suffering from deterioration due to severe corrosion environment. The following are some of the developed mitigating systems:

- Impressed Current Cathodic Protection (ICCP)
- Electrochemical Chloride Extraction (ECCE)
- Electrochemical Realkanisation (ERA)

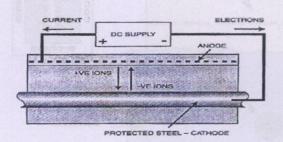
# **Impressed Current Cathodic Protection (ICCP)**

#### GENERAL

It is mainly used to reduce corrosion rates. Cathodic Protection (C.P.) is an electrochemical process resulting from formation of cathodes and anodes at different position of the metal surface. Oxidation of metal, corrosion occurs at the Anodic sides.

Cathodic protection works by connecting the metal to another material, which is Anodic.

#### **TYPES**


### Sacrificial Anode System

Material of the anode is more reactive than the metal in the structure. Zinc or Magnesium anodes. The anode is consumed in preference to the structure which is protected.

#### Impressed Current System

The anode material it self may be inert but maintained in an anodic state by connecting to appropriate pole of a direct current supply.

In order to provide adequate protec-



Impressed current system



Fixing of zinc anode to concrete surface

tion the anode has to be distributed over the surface.

### Types of surface anodes

Meshes of inert material and conductive coating repair material, conductivity to be similar to that of the surrounding material. Clean surface of concrete to ensure adhesion and passage of current are not impaired.

### Conductive coating

Paints heavily loaded with carbon material or (other conductive material). They are sprayed to the concrete surface or by rollers. Bare current feeder wires are stuck to the coating by using a tape.

#### Mesh anodes

In the form of chicken wire but are made from Titanium with an activated coating. They are fixed to the surface by using plastic fixing discs to space the disc off the surface. Electrical leads are welded to the mesh, which is covered by overlay of cementatious material.

#### Ouality Control

Embed half-cells to check that the system is continuing to operate successfully.



Placing of zinc anodes



Zinc Anode

### **Electro-Chemical Chloride Extraction (ECCE)**

#### General

Electro-chemical extraction systems have been developed to remove chloride ions from contaminated concrete to overcome the problem of chloride-induced corrosion, and re-instate the passivity of steel bars. It is used when highly chloride contents have been accidentally caused, either through mix contamination or by contact with salt water either while the concrete is green or during its life service. It is a non-destructive and silent operation, less dust, no environmental pollution. It does not need any structural supporting systems and finally it has a major time saving for repair works.

### Methodology

· Apply electrical field between the


- reinforcement and during externally mounted anode mesh
- During the process chloride ions are transported towards and out of concrete, in the same time electrolysis at the reinforcement surfaces produce a high PH environment around the steel bars

### **Quality Control**

Extract concrete samples at intervals and measure the percentage of chloride content.

#### Precaution

In case of marine environment, and concrete surfaces are located in splash zones and in order to reduce possibility of recontamination, additional protection coating to concrete surface is highly recommended.

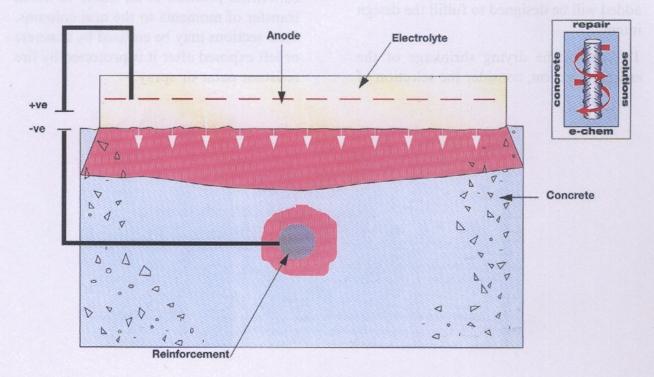


Mechanisms of Chloride extraction

### Electro-chemical Re-alkalization (ERA)

### **Objective**

To restore the alkalinity in carbonated concrete, and to re-establish a passive environment around the reinforcement with the minimum disruption to concrete.


### Methodology

The system involves passing an electric current through the concrete to the reinforcement using an externally applied anode, which is attached to the concrete surface. During this process re-alkalization is achieved as an alkaline electrolyte, generally a sodium carbonate solution is taken into the concrete. At the same time, electrolysis at the reinforcement surface produces a high pH environment

### **Quality Control**

### Testing

- Extract concrete samples at intervals to determine the degree of re-alkalization
- Use Phenolphthalein to measure the depth of re-alkalization



Mechanisms of realkalisation

# 2.3 Repair With Section Enlargement

#### General

Section enlargement is a repair method used either to restore or increase the load carrying capacity and stiffness of under capacity existing concrete members. The application is executed by bonding additional concrete and steel sections to concrete to form a monolithic section. This may be applied to any structural members i.e. columns, walls, beams and slabs.

### 2.3.1 Concrete Jacketing

#### Columns

Columns are enlarged in various configurations either by adding a new section abutting to the existing concrete column or encasing the existing section by steel reinforcement and concrete the new added will be designed to fulfill the design intent.

To control the drying shrinkage of the enlarged section, consider the selection of a proper mix design, which offers the lowest drying shrinkage value either by concrete encasement or concrete overlay. For slab soffites overlay, shotcreting method is applied.

### 2.3.2 Steel Sections, Steel Plates or Pre-Engineered sections

Repair by replacement is used whenever the existing concrete structures is beyond repair limits, and has insufficient load carrying capacity i.e. cases of severe fire damages. Steel sections are used to replace the existing columns, or placed under the beam soffites as a supplementary support. The replacement of the new supporting columns shall fulfill the design requirements and will be constructed by fixing the steel columns with steel plates which are fixed to the floor beams, the location will be aligned to ensure the concentric position in all floors to avoid transfer of moments to the new columns. Steel sections may be encased by concrete or left exposed after it is protected by fire resistant paint or spray.

### 2.3.1 Concrete Jacketing

### Column Neck

Fill gap between footing and column neck



Section enlarged steel bars



Column neck after repair

 Jacketing for column neck with fluid/ micro-silica concrete



Apply bonding agent by brush

### Columns and Tie Beams Jacketing



**Eccentric Column before repair** 



Concrete Jacketing and surface applied protection



Prepare Tie Beam for section enlargement



Tie Beam Jacketing after completion

### Columns Repair at different locations



Steel propping before start of repair



Cut back deteriorated concrete at the soffit of beams



Column after repair



Removal of deteriorated concrete above slab level



Column after repair

# 2.3.3 Carbon Fiber Reinforced Plastics (CFRP) Strips

CFRP strips are manufactured by pulltrusion, in which dozens of carbon fiber stands are impregnated in an epoxy resin bath and are shaped by being pulled through a die, then cured and hardened in an oven. The resulting material is very light, super strong, resistant to fatigue and does not corrode. CFRP strips could be up to 500 m long and may be rolled up. The tensile strength is in the range of 3000 Nmm2, in the direction of the fibers. The low strength across is not relevant for strengthening applications. Crosswise-applied strips may be used such as in concrete slabs weakened by cut out openings. CFRP strips are installed by epoxy adhesive without any lifting, supporting or clamping, even if the available space is limited. Applications requiring long strips can be done without lap joints, not like steel plates.

In some cases, it may be preferred to bond CFRP strips in tension (prestressed). The tensioning force relieves the strain on the steel reinforcement, reduce crack widths and increase deflection stability.

### 2.3.4 Fiber Reinforced Plastic (FRP)

FRP is a composite material consisting of fibers (such as glass, carbon and aramid)

and resins (such as epoxy). Fibers are introduced in a certain

volume, direction and position in the matrix, to get the required strength properties. FRP plates may be used, as steel plates, to improve the load carrying capacity of a concrete beam and to reduce cracks and arrest its propagation. They may be bonded to the beam under rehabilitation using epoxy adhesive, mechanically bonded with bolts or both together. The advantages of FRP include high tensile strength to weight ratio, corrosion resistance due to its non-metallic nature and electromagnetic neutrality. In addition, FRP are versatile and can be formed in any desired shape. They also have high chemical resistance and impact resistance. FRP may also be used as reinforcing bars instead of steel, especially in cases where high risk of corrosion is anticipated

#### 2.3.5 Shotcrete

Refer to item 2.2.1 same application to be implemented for section enlargement by shotcreting on layers and cure for an adequate period





Application of CFRP to brick walls and concrete girders

### Chapter 3 Quality Assurance Q/A

- Testing of Repair Material
- Quality Control during execution Q/C
- Evaluation after repair

#### General

The quality Assurance should be planned prior to the start of any repair works.

The **HIT - OR - MISS** approach in repair methods should be prohibited.

There are some difficulties encountered for the realistic performance.

Testing requires being subject to a real world environment for a realistic duration.

Another aspect is that repair materials are continuously changed.

The most important performance based

criteria between the repair material and host material are:

- Performance Compatibility
- Environmental Compatibility
- Dimensional Compatibility
- Electrochemical Compatibility

### **Testing of Repair Materials**

#### General

Evaluate the repaired concrete performance by following the standard test methods for evaluating concrete.

ACI = American Concrete Institute

ASTM = American Society for Testing and Material

AASHTO = American Association of State Highway and Transportation officials

### The following table lists the repaired concrete properties and the required standard tests

| Repaired Concrete Properties                                    | Standard Test Methods                                                     |
|-----------------------------------------------------------------|---------------------------------------------------------------------------|
| Mechanical Properties Compressive Strength                      | Osality Control during execu- tion O/C                                    |
| <ul><li>Core-Testing</li><li>Rebound Hammer</li></ul>           | ASTM C42<br>ASTM C805                                                     |
| Quality of Concrete Ultra sonic Puls Velocity (UPV)             | ASTM C 597                                                                |
| Tensile Strength                                                | ASTM C 496                                                                |
| Flexural Strength                                               | ASTM C 78<br>ASTM C 293                                                   |
| Abrasion Resistance                                             | ASTM C 418                                                                |
| Chemical Make Up - Electro Chemical Activity                    | ASTM C 876                                                                |
| Carbonation Depth                                               | Phenolphthalein Solution                                                  |
| Alkali Aggregate Reaction                                       | ASTM C 856                                                                |
| Chloride Content                                                | ASHTO T 259<br>ASHTO T 260<br>ASHTO T 277                                 |
| Physical Condition  Uniformity Air Void System Water Absorption | ASTM C 42<br>ASTM C 457<br>ASTM C 642                                     |
| Delamination/ (Voids)                                           | UPV - ASTM C 597                                                          |
| Modulus of Elasticity & Poissons Ratio                          | In accordance with ASTM C469                                              |
| Compressive Creep                                               | To ensure creep under compression in accordance with ASTM 512             |
| Coefficient of Thermal Expansion                                | In accordance with ASTM C 531                                             |
| Non-restrained Shrinkage                                        | In accordance with ASTM C 157                                             |
| Adhesion of Repair Material                                     | Direct tensile tests/direct pull off test<br>In accordance with ASTM E149 |
| Shrinkage and Thermal Movements                                 | Prism Test/Shrinkage Prism Test<br>In accordance with ASTM C157           |

# Quality Control before, during and after completion of repair

### **Before Starting**

#### Resources:

Prequalify specialized contractors

Based on skilled manpower, materials, equipment, past experience in similar repair projects

### During Execution of Repair Work Administrative system for:

- Approval of submittals, materials, workshop drawings, method statement for each repair technique
- Check List system for each repair phase
- Mock up to ensure the performance of the material and workmanship
- Record for each test samples

# Evaluation after repair

Objective

To assess the future behavior of the repair material

• Carbonation tests:

Assess the rate at which the carbonate front moves into concrete from the surface. This evaluation is done after 5 years and before issuance of the final completion certificate to the contractor. The following formula presents the relation between carbonation depth and time.

$$D = K_c \sqrt{t}$$

Where

D = Carbonation depth

 $K_c$  = Carbonation factor

t = Time (5 Years)

#### Chloride Profiles:

Define a threshold of chloride level (0.3%) by weight of cement. This is recommended for the Gulf Area Environment. Measurements of chloride content are taken at increments from the concrete surface. Check if the chloride near the reinforcement is safe or unsafe. Determine the depth at which the chloride contents to reach 0.3%.

Depth = depth at which 0.3% chloride content is found from which the  $K_C$  factor is calculated. The following formula presents the relationship between depth and time.

$$D = K_c \sqrt{t}$$

Where D is the depth at which 0.3% chloride content is measured t is time (5 years)

From which the

 $K_c$  = Factor at 0.3% Chloride Content is defined.

To calculate the time required for corrosion to reach the embedded steel reinforcement i.e. If the depth of cover is D1, then the time will be equal to:

$$t = (D_1 / K_c)^2$$

### • Concrete Strength & Density

Cut cores for concrete compressive strength (columns) compression members. It is recommended that the minimum compressive strength for structural repairs to be 27.6 MPa (4000 psi) after 28 days commonly used ASTM C-42 concrete coring for concrete compressive strength.

- Ultra Sonic Pulse Velocity
   Gives indication of the repaired zone about the following characteristics:
- Quality
- Changes in quality
- · Cracking and its depth

Note: the results can, in some circumstances, be calibrated against the known strength of appropriate sample

This test for concrete strength should be performed after 28 days of repair

### Initial Surface Absorption Test (ISAT)

The following table shows how (ISAT) results and the cumulative absorption over two hours period may be related to concrete quality

## Interpretation of the ISAT results (BS1881)

| Concrete quality | Absorption | 2 Hours cu-<br>mulative ab-<br>sorption<br>ML/m2 |  |
|------------------|------------|--------------------------------------------------|--|
| Good             | Low        | < 1000                                           |  |
| Average          | Average    | 1000 - 2000                                      |  |
| Poor             | High       | > 20000                                          |  |

### • Electrical Potential mapping

The interpretation of potential in relation to the chance of corrosion is given in the following table:

Relationship between Potential and risk of corrosion

| Half-Cell Potential<br>(cu/cuso4)* | Risk of corrosion |
|------------------------------------|-------------------|
| Less negative than - 200 mV        | 5%                |
| From - 200 to - 350<br>mV          | 50%               |
| More negative than - 350 mV        | 95%               |

<sup>\*</sup> Cu/CuS04 = Copper/Copper Sulphate [Rod of metal in a saturated solutions i.e. Copper in Copper Sulphate Half-Cell].

Note: The measurement may be affected by a number of factors, so care and experience are needed to avoid misleading results.

The method is described in ASTM C 876. Numerous commercial systems are available for collecting half-cell potential data. This includes single cells, multi cell arrays and the Taywood Potential wheel that enables rapid scanning of large areas. A map can be obtained of equal potential contours.

#### Insitu Load Testing:

- For repaired Flexual structural members (beams & slabs)
- For partial or full depth repair replacement (form & cast)

or shotcrete repairs recommended in case of fire damage repair or severely corroded slab soffites and beams. Test to be performed in accordance with ASTM 437-R-91.

### **Chapter 4 Tender Documents**

#### 4.1 Forms of Contract.

The Rehabilitation/Repair contractor may enter into a contract directly with the owner or the ultimate user of the facility or may enter into a sub contract with a general contractor or a construction manager who sublets on behalf of the owner.

Several Forms of Contract are most likely used.

### 4.1.1 A Lumpsum Contract.

AIA: American Institute of Architects standard Form of Agreement between owner, and contractor, for a stipulated sum.

## 4.1.2 A Cost-Plus Fee Type Contract.

AIA Form A III "Standard term of agreement between owner and contractor, cost of the work plus a fee. The fee could be as a percentage of the cost of the work or as a lumpsum amount added to the cost work.

### 4.1.3 A Unit Price Contract.

This type of contract will be based on assumed estimated quantity for each of the types of works to be performed.

When the work is completed an accurate measurement can be made for each type of work that was actually performed and the unit price previously agreed upon for the calculation of the money payable to the contractor.

Recommend Form of Contract for Rehabilitation/Repair.

Based on the experience gained from concrete repair projects in Kuwait and the impact of contractual disputes arising from the interpretation of the contract documents and due to uncertainty of the extent of damage and dealing with unknown repair items especially the concealed structural members (sub-structure or above False ceiling during the preparation of conditions of contract). For a fair and balanced contract we recommend the UNIT PRICE Form of Contract.

### 4.2 Tender Documents.

The Tender Documents will include:

- Design Drawings / Calculation Sheets for repairs
- Specifications.
- Material Specification
- Application
- Performance Specification to ensure quality control Q/C and Quality Assurance (Q/A)
- Bill of Quantities (B.O.Q) (items and unit rates only incase of unit price contracts)
- Method of Measurement

### 4.3 Method of Measurement

Quantitative repair measurement differs in all aspects from normal concrete construction.

### Post contract condition survey

More detailed investigations for localized areas prior the start of repair work may be required. Table # 3 illustrates the most common types of tests.

#### Work Executed

The recommended method of mea-

surement for executed repair works includes the majority of expected items as shown in table # 2, however, other new items may be added for special repair techniques.

- Table # 3 includes the method of measurement to cover the cost of required tests after signing the contract (Post contract condition survey)
- Table # 4 includes the method of measurement for the type of repair work executed, the method of measurement and unit rate of each item.

Both tables # 3 and # 4 shall be filled by the bidders as part of the contract documents for bid evaluations

### 4.4 Cost Of Repair Or Replacement

The findings of the condition survey, strength evaluation and material selection are crucial for major decision to:

Repair or Demolish and Rebuild

### **Key Questions**

- Will the safety of structure be of major concern?
- Will the concrete repair extend the life span of the building at a low cost?

- Will it be less than demolish and rebuild?
- Does the building have a historical or commercial value?

If the answer to any of these question is Yes?

Then proceed with the repair

### 4.5 Legal Conditions

Consider the following important legal items, which differ from the normal contracts:

• Final Completion Certificate

The Engineer shall issue the final

completion certificate after 5 years and proof of successful Q/A tests.

#### • Performance Bond

The retained value of (10%) by the owner shall be paid to the repair contractor after issuance of the final completion certificate.i.e. after 5 years.

• Safety (Structural Liability & Insurance Policy)

10 years after the issuance of the substational completion certificate.

Table #3

### Method of Measurement Post Contract Condition Survey

| Type of Test                           | Unit                   | Cost                                                                                                |
|----------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------|
| Scaffolding                            | Area m <sup>2</sup>    | Patching Mortary Cut hack con-                                                                      |
| Visual Inspection                      | Lump sum               | ser with specified mortar                                                                           |
| Ultra sonic pulls velocity (UP         | Area m <sup>2</sup>    | # 40 to 80 mm ÷                                                                                     |
| Crack Mapping                          | Area m <sup>2</sup>    | und repair Out concrete surface, bliss, and                                                         |
| Cover depth                            | Area m <sup>2</sup>    | e 40 to 20 mm<br>a 80 to 120 mm                                                                     |
| Core testing                           | Unit                   | a 120 mm ±<br>Crack Injection                                                                       |
| Chloride Profile                       | Unit                   | inject and seat cracks as de-<br>scribed in condicte repair meth-<br>sid clean, union and make good |
| Carbonation depth                      | Unit                   | siler removal of peckers<br>socketing with Fluid Micros sili-                                       |
| Half Cell Potential and Potent mapping | al Area m <sup>2</sup> | a concruis<br>a Upro 05 m<br>a Up to 1.0 m                                                          |
| Water Absorption                       | Unit                   | e Up to 2.0 m<br>e Up to 4.0 m<br>Thickness (50 to 100 mm)                                          |
| Water Permeability                     | Unit                   | Jacketing with Find Micro-sile<br>to concrete for beains                                            |
| Corrosion rate                         | Area m <sup>2</sup>    | Filling gates and voids                                                                             |

Table # 4
Method of Measurement Work Executed

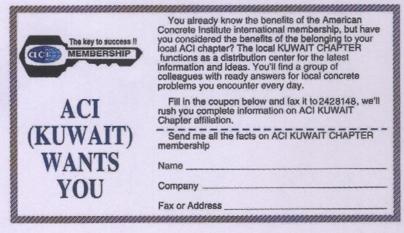
| TYPE OF WORK                                                                                                                     | METHOD OF MEASUREMENT                                                                           | UNIT              | RATE          | TOTAL                   |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------|---------------|-------------------------|
| Sand Blasting                                                                                                                    | Actual executed work                                                                            | $M^2$             | esTile onvi   |                         |
| Supporting system (propping)                                                                                                     | Actual supported area                                                                           | $M^2$             |               |                         |
| Patching Mortars: Cut back con-<br>crete surfaces, blast steel and re-<br>pair with specified mortar                             | Actual work executed                                                                            | $M^2$ $M^2$ $M^2$ | dollas        | Santones<br>Visual Inst |
| • Up to 15 mm<br>• 40 to 80 mm<br>• 80 mm +                                                                                      | Fin Lord                                                                                        | (VTC) (pr         | olov sliugi   | inos enilij             |
| Fluid Repair Cut concrete surface, blast and repair as specified                                                                 | Actual work executed                                                                            | $M^2$ $M^2$ $M^2$ | garq          | Crack Ma                |
| • 40 to 80 mm<br>• 80 to 120 mm<br>• 120 mm +                                                                                    | Area m²                                                                                         |                   | 1             | Cover dep               |
| Crack Injection                                                                                                                  | Actual work executed per linear                                                                 | MR                |               | (8169) DEDU             |
| Inject and scal cracks as de-<br>scribed in concrete repair meth-<br>od, clean, inject and make good<br>after removal of peckers | meter For columns and beams up to 20 cm Prorate for more depth                                  |                   | elilos        | Chlorida P              |
| Jacketing with Fluid/Micro-sili-                                                                                                 | Actual executed work                                                                            | $M^2$             | 100 11000 515 | 201110101010            |
| <ul> <li>up to .05 m</li> <li>up to 1.0 m</li> <li>up to 2.0 m</li> </ul>                                                        | San aviA                                                                                        | icompof b         | otontial an   | Half Cell I<br>mapping  |
| • Up to 4.0 m Thickness (50 to 100 mm)                                                                                           | finU                                                                                            |                   | nongro        | Water Ab                |
| Jacketing with Fluid/Micro-sili-<br>ca concrete for beams<br>Thickness (50 to 100 mm)                                            | Actual executed work<br>Linear meter                                                            | M <sup>2</sup>    | genbility     | Water Per               |
| Filling gabs and voids                                                                                                           | Actual executed work                                                                            | Per number        |               |                         |
| Jacketing with reinforced concrete                                                                                               | Actual executed work                                                                            | M <sup>2</sup>    |               |                         |
| Shotcrete application  • Walls  • Ripped slabs Thickness (7.5 to 10 cm)                                                          | Actual working areas<br>(vertical for walls)<br>Vertical & horizontal for ribbed<br>slabs/beams | $M^2$ $M^2$       |               |                         |
| Concrete Protection<br>Apply primer, two coats of spe-<br>cified coats                                                           | Actual work executed                                                                            | M <sup>2</sup>    |               |                         |
| Joint sealant Sealing joints with specified material Material including racking                                                  | Actual work executed per Linear meter                                                           | LM                |               |                         |

### 5. REFERENCES

- ACI Committee 506, "Guide to Shotcrete"
   ACI 506 R-90, American Concrete Institute, Detroit, 1995
- ACI Committee 506, "Specification for Shotcrete"
   ACI 506.2 95, American Concrete Institute, Detroit, 1995
   ACI Committee 503, "Standard Specification for Repairing Concrete with Epoxy Mortars", ACI 503.4 92, American Concrete Institute, Detroit, 1992
- Habaubi, L "Extending the Boundaries of Concrete Repair An Electrochemical Approach to Cost Effective Durability", 6th International Conference Deterioration and Repair of Reinforced Concrete in the Arabian Gulf, Bahrain, November 2000
- KEO International Consultants, Report on "Concrete Repair Report

- College Of Social & Legislative Sciences, Kuwait University", 2000
- Freig, S. and Darwish, A., Assessment and Repair of War Damaged Concrete Buildings in Kuwait City", Concrete International, March 1993
- Emmonns, P.H. "Concrete Repair and Maintenance Illustrated", R.S. Means, 1994
- "Guide to Damage Assessment and Repair of Concrete Structures", ACI Kuwait Chapter ACI/KC 01-98, 1998
- Fosroc International, Publication UAE/0256/98,A 1998
- Fosroc International, Publication ME/101/00/B 2000
- Fosroc International, Publication UAE/0405/00/A 2000
- Fosroc International, Publication UAE/0406/00/A 2000

### THE AMERICAN CONCRETE INSTITUTE


was founded in 1905 as a nonprofit membership organization dedicated to public service and to representing user interests in the field of concrete. It gathers and distributes information on the improvement of design, construction and maintenance of concrete products and structures. The work of the Institute is done by individual members and by volunteers committees.

The committees, as well as the Institue as a whole, operate under a consensus format, which assures all members the right to have their views considered. Committee activities include the development of building codes and specification standards; analysis of research and development results; presentation of construction and repair techniques; and education.

Anyone interested in the acitivites of the Institute is encouraged to seek membersip. There are no educational or employment requirements. Engineers, architects, scientists, construtors and representatives from an variety of companies and organizations from the Institute membership.

All members are eligible and encourged to participate in committee activities that relate to their specific areas of interest. Membership information, a publications catalog, and listings of educational activities are available.



